

Mondragon
Unibertsitatea

Humanitate eta Hezkuntza
Zientzien Fakultatea

Teachers' perceptions of the STEM educational model

Patricia Aránzazu González Atutxa,
Unai Carmona Igartua & Irati Romero Garmendia

1

State of art

State of art

STEM

- It is an **educational model** where the boundaries between the four disciplines are blurred (Pitt, 2018).
- Students' interest in and motivation for **STEM** subjects and careers is low.

STEM education

Challenges (National Research Council, 2011)

01

To increase the number of students pursuing higher education and careers in **STEM** fields.

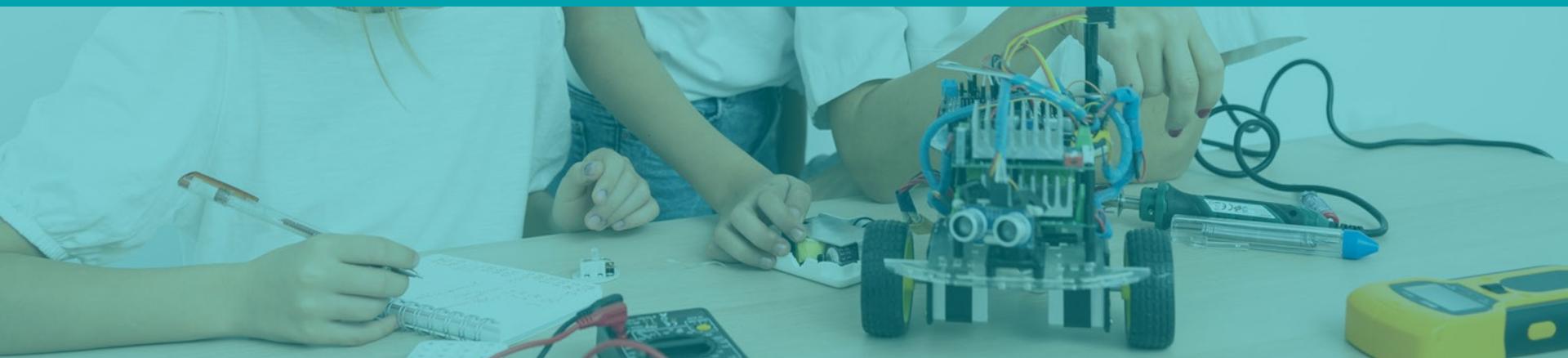
02

To broaden and extend participation in **STEM** fields.

03

To ensure **STEM** literacy for all students.

MORE
STUDENTS


STEM
EXTENSION

STEM
LITERACY

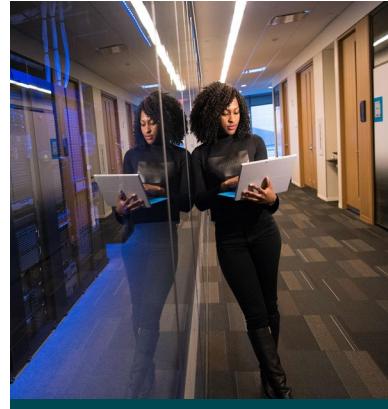
Why is it so important?

According to Couso (2017) to be STEM literate is to

“... be able to identify and apply, in an integrated or less integrated way, essential knowledge about science, engineering and mathematics, in order to understand, decide and/or act on a complex problems and achieve creative and innovative solutions, taking advantage of the personal and technological synergies available, and in a critical, reflective and courageous manner”.

Why is it so important?

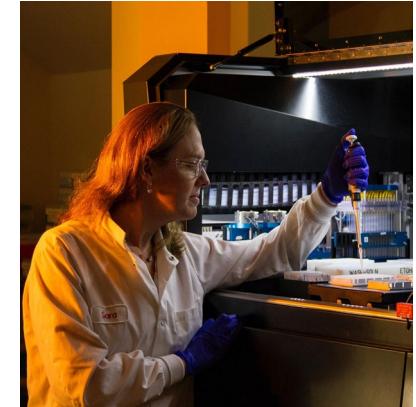
- The labor **market** needs **STEM workers**.
- It is necessary to awaken **professional vocations in STEM** areas (Eusko Jaurlaritza, 2018).


MARKET NEEDS

STEM WORKERS

Why is it so important? Leaky pipeline

- The number of **women pursuing STEM** studies and careers is **far lower than that of men** (EUSTAT, 2019).
- **4 factors** influence women's performance in **STEM** education (UNESCO, 2017).


PERSONAL FACTOR

FAMILY AND PEER
FACTOR

SCHOOL FACTOR

SOCIAL FACTOR

Interest loss in STEM

Why do students lose interest and motivation towards STEM?

- The choice of **pathways changes as students grow older** (Valero-Matas & Coca-Jiménez, 2021).
- The **interest progressively decreases** as they progress to higher levels (Hernández-Serrano & Muñoz-Rodríguez, 2020).

Interest loss in STEM

FACTORS CREATING LOSS OF INTEREST

1. The traditional approach and the use of expository strategies (Hernández-Serrano & Muñoz-Rodríguez, 2020).
2. The instruction in these subjects, organized toward **more complex topics** (Rosenzweig & Wigfield, 2020).

POSSIBLE SOLUTION

1. The greater the practicality, the greater the interest in these disciplines (Valero Matas & Coca Jiménez, 2021).

FACTORS

SOLUTIONS

Teacher's perception

Margot and Kettler (2019)

- Six barriers that frustrate STEM education: **curricula, pedagogy, assessment, faculty, student body, and structural systems.**

Ejiwale (2013) and Hsu and Fang, (2019)

- **Poor teacher training, lack of teacher professional development, teacher shortages, poor integration of interdisciplinary content, poor student motivation, inadequate facilities, and inadequate assessments.**

Wahono and Chang (2019)

- Three main obstacles: **poor knowledge, difficulty in applying STEM in some subject areas, and difficulty in relating STEM subjects.**

2

Method

A project to **stimulate STEM vocations** among **students in Gipuzkoa**, paying special attention to female students

Second work package

OBJECTIVES AND STEPS TO FULFILL THEM

OBJECTIVES

- To analyze the teachers' perception towards STEM educational model

STEPS

01 MEASUREMENT OF INITIAL PERCEPTION

Analyze the perception towards STEM using a questionnaire

02 TEACHER TRAINING

3 training sessions on STEM: general framework, contrast of a project and final evaluation

03 FOCUS-GROUP

Analyze the final perception towards STEM

Sample

HOW DID WE FULFILL THE RESEARCH?

20 secondary education STEM teachers from 3 schools of Gipuzkoa

Teachers' experience

1st table: Years teachers have worked in education.

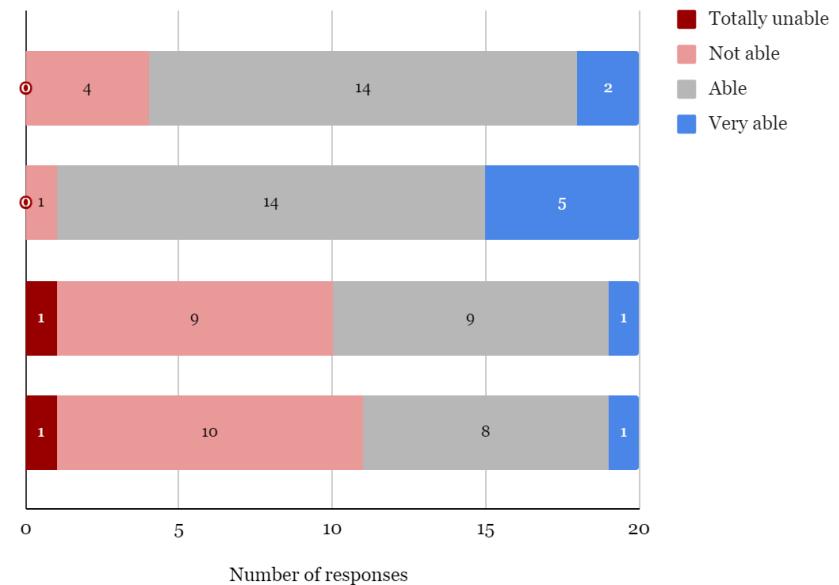
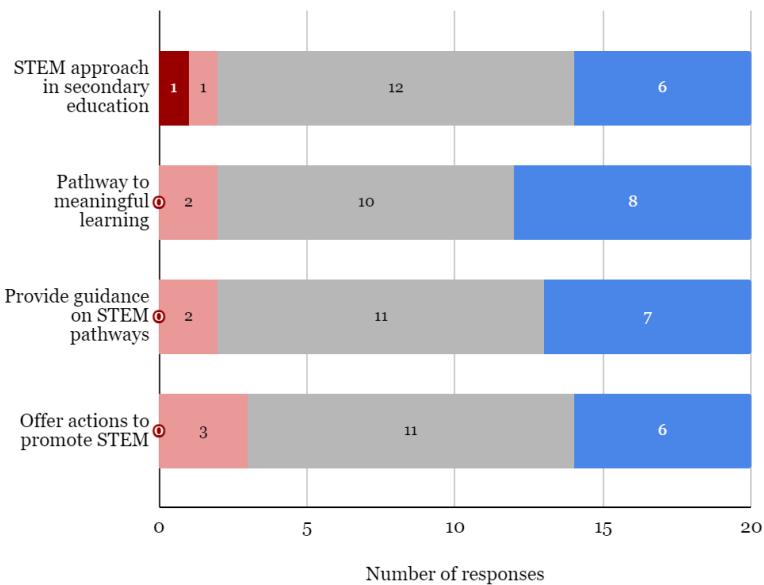
1-5		6-10		11-20		21-30		31-40	
Years	4	5	2	6	3				
Percentage	20%	25%	10%	30%	15%				

2nd table: Teachers' subjects.

	Ma	Tec	Sci	Eus	Eng	Fis	Che	Sp	Geo	Bio	Geo	Plas	ICT	Des
Amount	5	5	2	1	1	2	2	1	1	3	3	2	2	1
Perceptage	25%	25%	10%	5%	5%	10%	10%	5%	5%	15%	15%	10%	10%	5%

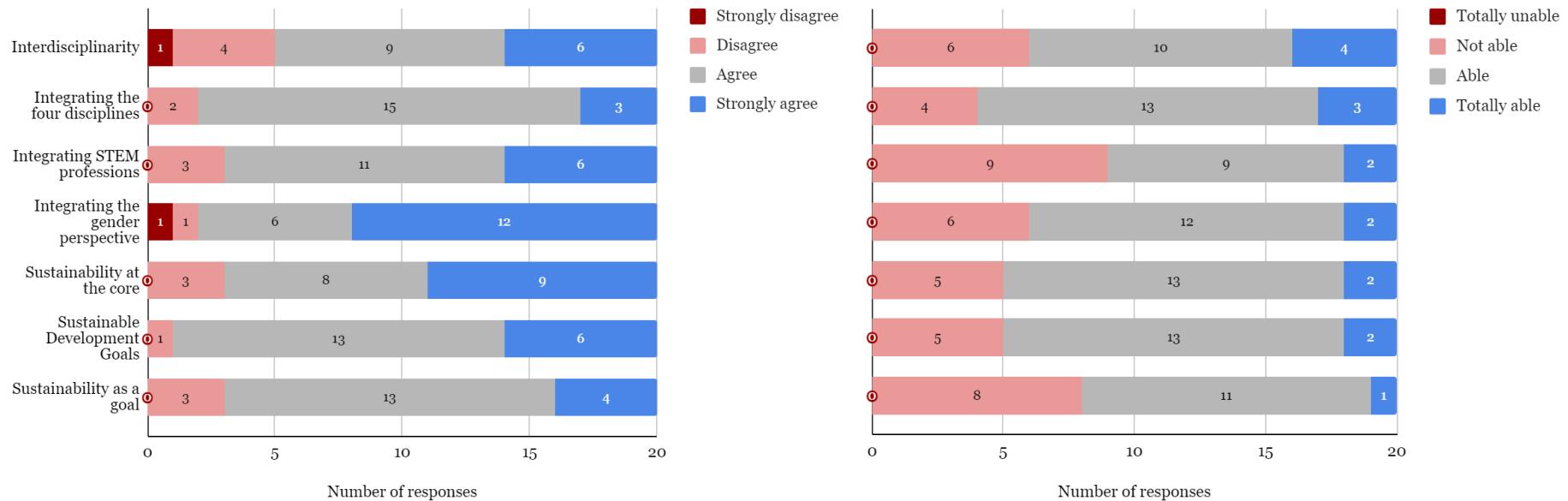
Instruments

A QUESTIONNAIRE WAS ELABORATED TO MEASURE TEACHERS' PERCEPTIONS TOWARDS STEM EDUCATIONAL MODEL

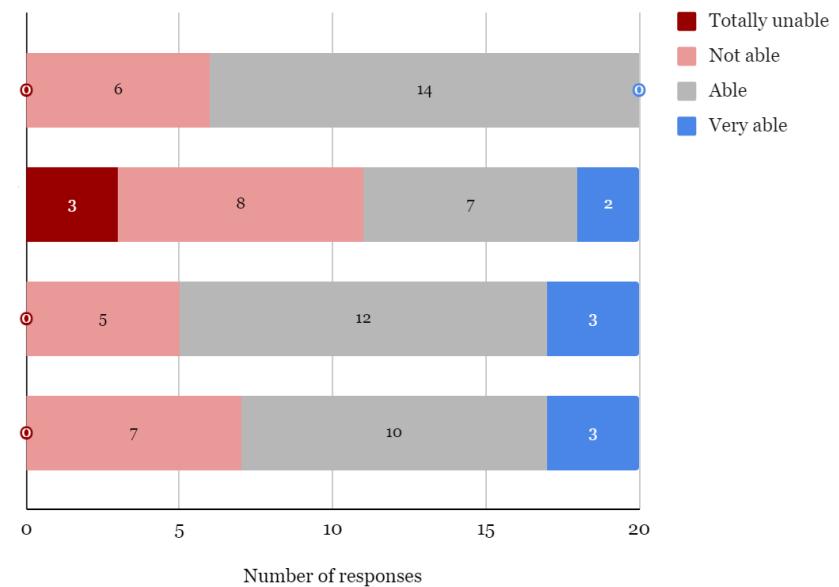
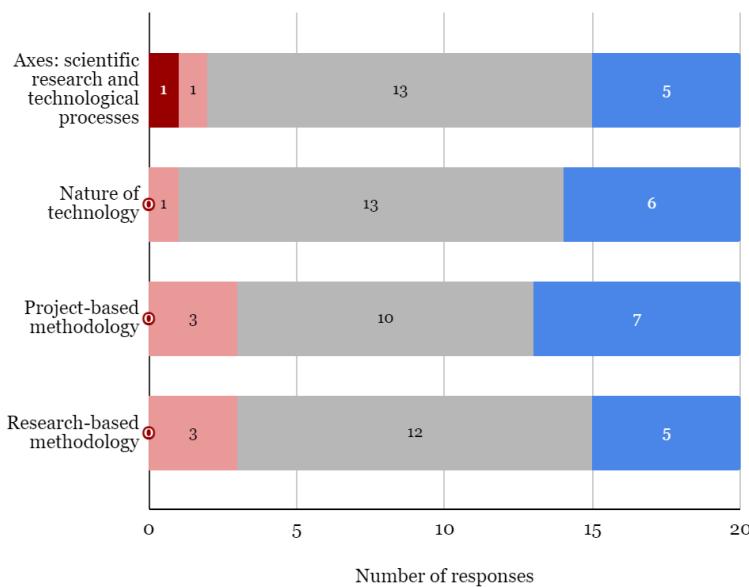


9 CATEGORIES

- 1) General data**
- 2) Understanding of the STEM educational framework**
- 3) Implementation of STEM teaching-learning processes**
- 4) Teacher training**
- 5) Educational community**
- 6) Center infrastructure**
- 7) Coeducation**
- 8) Projects**
- 9) TOWS table (Threats, Opportunities, Weaknesses and Strengths)**

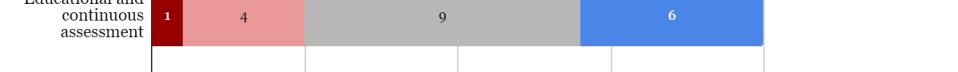
3

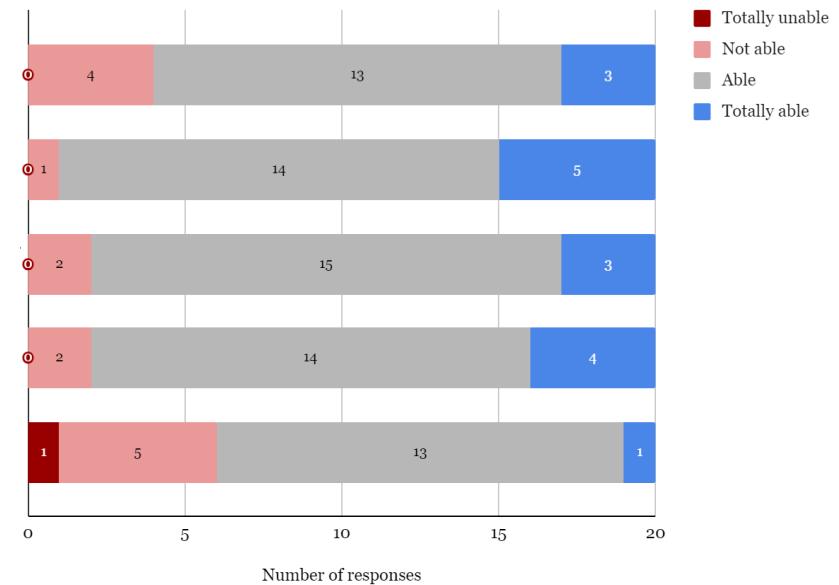
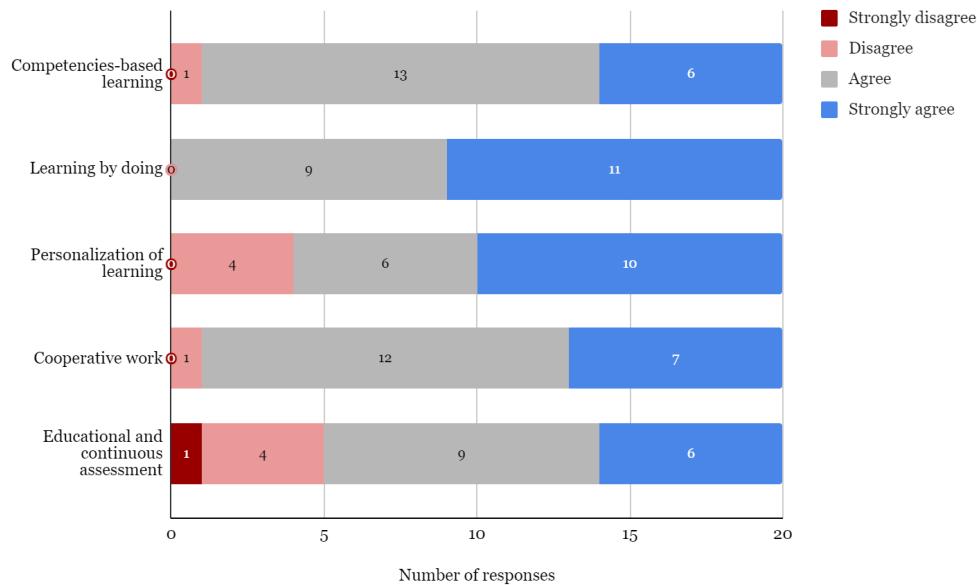

Data analysis

General STEM framework



1st graphic: General STEM framework.

Characteristics and principles





2nd graphic: Characteristics and principles.

Methodology and core idea

3rd graphic: Methodology and core idea.

Teaching-learning psychopedagogical basis

4th graphic: Teaching-learning psychopedagogical basis.

4

Conclusions

Conclusions

01

In general, the majority of teachers understand the STEM educational model itself and understand the essential characteristics and conditions of this approach.

02

They point out that they see themselves not only prepared to understand, but also to carry out different items.

03

In summary, these are conclusions that do not correspond to what we have read in the literature.

5

References

References

- Eusko Jaurlaritza (2018). *STEM Euskadi I. Hezkuntza Estrategia*. <http://steam.eus/steam-euskadi-estrategia/>
- EUSTAT (2019). *Hezkuntzaren Panorama*. https://eu.eustat.eus/elementos/Hezkuntzaren-panorama/inf0017029_e.pdf
- Couso, D. (2017). ¿Sabemos por què estamos a STEM? Un intento de definir la alfabetización STEM para todo el mundo y con valores. *Ciències*, 34, 22-30. <https://doi.org/10.5565/rev/ciencies.403>
- Ejiwale, J.A. (2013). Barriers to successful implementation of STEM education. *Journal of Education and Learning*, 7, 63–74. <https://doi.org/10.11591/edulearn.v7i2.220>
- Hernández-Serrano, M. J., & Muñoz-Rodríguez, J. M. (2020). Interest in STEM disciplines and teaching methodologies. Perception of secondary school students and preservice teachers. *Educar*, 56(2), 369–386. <https://doi.org/10.5565/REV/EDUCAR.1065>
- Margot, K.C. eta Kettler, T. (2019). Teachers' perception of STEM integration and education: A systematic literature review. *International Journal of STEM education*, 6, 1–16. <https://doi.org/10.1186/s40594-018-0151-2>

References

- National Research Council (2011): *Successful K-12 STEM Education: Identifying Effective Approaches* in Science, Technology, Engineering, and Mathematics, Washington, DC, The National Academies Press.
- Pitt, J. (2018). Blurring the Boundaries – STEM Education and Education for Sustainable Development. *Design and Technology Education: An International Journal*, 14(1), 37–48.
- Rosenzweig, E. Q., & Wigfield, A. (2016). STEM Motivation Interventions for Adolescents: A Promising Start, but Further to Go. *Educational Psychologist*, 51(2), 146–163. <https://doi.org/10.1080/00461520.2016.1154792>
- UNESCO (2017). *Cracking the code: Girls' and women's education in science, technology, engineering and mathematics (STEM)*.
- Valero-Matas, J. A., & Coca-Jiménez, P. (2021). *La percepción de las materias STEM en estudiantes de Primaria y Secundaria* : The perception of stem subjects in elementary and secondary students. In *Sociología y tecnociencia: Revista digital de sociología del sistema tecnocientífico*, 11(1), 116–138. <https://dialnet.unirioja.es/servlet/catart?codigo=7845278>
- Wahono, B. eta Chang, C.-Y. (2019). Assessing teacher's attitude, knowledge, and application (AKA) on STEM: An effort to foster the sustainable development of STEM education. *Sustainability*, 11, 950. <https://doi.org/10.3390/su11040950>

Mondragon
Unibertsitatea

Humanitate eta Hezkuntza
Zientzien Fakultatea

Vielen Dank
Eskerrik asko
Thank you

Patricia Aránzazu González Atutxa
pagonzalez@mondragon.edu

Dorleta zg
20540 ESKORIATZA
T. 943 71 41 57
www.mondragon.edu