Artur Coelho, Isabel Cabrita
Abstract
Creativity is recognized nowadays as a basic skill. However, the educational system fails in promoting their development. On the other hand, a growing acknowledgement of the importance of geometry emerges. Conceptual renewal, namely on isometries, requires new approaches based on mathematically significant tasks. The digital revolution has brought powerful tools but demands changes in the educational process. The use of Dynamic Geometry Environments (DGE), complementing ‘paper and pencil’, can contribute to provide rich learning environments, enhanced by Classroom Management Systems (CMS) such as iTALC. Indeed, the qualitative case study we carried out suggests that: the creation of an “atmosphere” of cooperation, collaboration and sharing seems to increase creativity dimensions; the use of DGE can facilitate the emergence of more creative productions; development of knowledge and geometrical capabilities seems to benefit from a complementary approach that combines DGE and ‘paper and pencil’ environments. Different approaches, with a more technological and exploratory nature seem to promote more favourable attitudes towards mathematics in general, and geometry, in particular.
Keywords
Mathematics, Isometries, CMS, Creativity, GeoGebra
Full Text:
References
Adams, D., & Hamm, M. (2010). Demystify math, science, and technology: creativity, innovation, and problem-solving. City: Rowman & Littlefield Education.
Alencar, E. S. (2007). Criatividade no contexto educacional: três décadas de pesquisa. Psicologia: Teoria e Pesquisa, 23 (n. especial), 45-49.
Bardini, C., Pierce, R., & Stacey, K. (2004). Teaching linear functions in context with graphics calculators: students’ responses and the impact of the approach on their use of algebraic symbols. International Journal of Science and Mathematics Education, 2, 353-376.
Berger, M. (2012). One computer-based mathematical task, different activities. In T. Y. Tso, (Ed.), Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education, 2, (pp. 59-66). Taipei, Taiwan: PME.
Berliner, D. C., & Calfee, R. C. (Eds.) (1996). The handbook of educational psychology. New York: Macmillan.
Bogdan, R., & Biklen, S. (1994). Investigação qualitativa em Educação: uma introdução à teoria e aos métodos. Porto: Porto Editora.
Breda, A., Serrazina, L., Menezes, L., Sousa, L., & Oliveira P. (2011). Geometria e Medida no Ensino Básico. Lisboa. Ministério da Educação, Direção Geral de Inovação e Desenvolvimento Curricular.
Brophy, J., & Good, T. (1986). Teacher behaviour and student. In M. Wittrock (Ed). Handbook of research on teaching. New York: Macmillan.
Cabrita, I., Coelho, A., Vieira, C., Malta, E., Vizinho, I., Almeida, J., Gaspar, J., Pinheiro, J., Nunes, M., Sousa, O., & Amaral, P. (2011). Novos desafios de uma Matemática criativa. Aveiro: Universidade de Aveiro. Comissão Editorial. ISBN 978-972-789-344-7.
Clements, D. (2003). Teaching and learning geometry. In J. Kilpatrick, W. G. Martin & D. Schifter (Eds.), Research Companion to Principles and Standards for School Mathematics (pp. 151-178). Reston, VA: National Council of Teachers of Mathematics.
Clements, D. H., Battista, M. T., Sarama, J., & Swaminhatan, S. (1996). Development of turn and turn measurement concepts in a computer-based instructional unit. Educational Studies in Mathematics, 30, 313-337.
Coelho, A. (2013). GeoGebra e iTALC numa abordagem criativa das isometrias. Dissertação de Mestrado. Universidade de Aveiro.
Conway, K. (1999). Assessing open-ended problems. Mathematics Teaching in the Middle School, 4(8), 510-514.
Cropley, A. (2003). Creativity in education and learning: A guide for teachers and educators. London. Kogan Page.
Fleith, D., & Alencar, E. (2005). Escala sobre o clima para criatividade em sala de aula. Psicologia: Teoria e Pesquisa, 21(1), 85-91.
Galluch, P. & Thatcher, J. (2011). Maladaptive vs. faithful use of internet applications in the Classroom: An empirical examination. Journal of Information Technology Theory and Application (JITTA), 12(1) (pp. 5-21) Retrieved from: http://aisel.aisnet.org/jitta/vol12/iss1/2
Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher, & J. Kilpatrick (Eds.), Mathematics and cognition: A research synthesis by the International Group for the Psychology of Mathematics Education (pp.70-95). Cambridge: Cambridge University Press.
Hiebert, J. (2003). What research says about the NCTM standards. In J. Kilpatrick, W. Martin & D. Schifter (Eds.), A research companion to principles and standards for school mathematics, (pp. 1-23). Reston, VA: National Council of Teachers of Mathematics.
Jacobson, C., & Lehrer, R. (2000). Teacher appropriation and student learning of geometry through design. Journal for Research in Mathematics Education, 31(1), 71-88.
Joyce, R. & Schmidl, H. (2008). The big brother and better early college grades. In Proceeding of the Southern Association for Information Systems Conference. Richmond, VA, USA. Retrieved from: http://www.cs.miami.edu/~harald/papers/sais2008.pdf
Kuchemann, D. (1981). Reflections and rotations. In K. M. Hart (Ed.), Children´s Understanding of Mathematics 11-16 (pp. 137-157). London: John Murray.
Laborde, C. (2001). Integration of technology in the design of geometry tasks with cabrigeometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.
Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129-145). Rotterdam: Sense Publishers.
Levenson, E. (2011). Mathematical creativity in elementary school: is it individual or collective? In Proceedings of CERME 7, (pp. 215-234). University of Rzesków, Poland. Retrieved from: http://onlinelibrary.wiley.com/doi/10.1002/j.2162-6057.2011.tb01428.x/abstract
Lu, Y. (2008). Linking Geometry and Algebra: A multiple-case study of Upper-Secondary mathematics teacher’s conceptions and practices of GeoGebra in England and Taiwan. Master of Philosophy in Educational Research, University of Cambridge. Retrieved from: http://www.geogebra.org/publications/2008-Lu-GeoGebra-England-Taiwan.pdf
Matos, J. M. (2001). Visualização, veículo para a educação em geometria. Retrieved from: http://spiem.pt/DOCS/ATAS_ENCONTROS/2000/2000_08_CCosta.pdf
Mehanovic, S. (2009). Learning based on dynamic software geogebra. Retrieved from: http://isis.ku.dk/kurser/blob.aspx?feltid=229084
Misfeldt, M. (2009). Semiotic instruments: considering technology and representations as complementary. Retrieved from: http://www.geogebra.org/publications/2008-Misfeldt-Cerme6.pdf
Moyer, J. (1978). The relationship between the mathematical structure of euclidean transformations and the spontaneously developed cognitive structures of young children. Journal for Research in Mathematics Education, 9(2), 83-92.
NCTM (2000). Principles and standards for school mathematics. Retrieved from: http://standards.nctm.org/document /chapter1/index.htm
NCTM (2008). Princípios e normas para a Matemática escolar (2.ª ed.) (APM, Trad.). Lisboa: APM (Original document published in 2000).
Ponte, J. P. (2005). Gestão curricular em Matemática. Retrieved from: http://repositorio.ul.pt/handle/10451/3008
Ponte, J. P. & Serrazina, L. (2004). Práticas profissionais dos professores de Matemática. In O insucesso em Matemática: contributos da investigação, SEMINÁRIO. Lisboa: Escola Superior de Educação de Lisboa.
Ponte, J. P., Serrazina, L., Guimarães, H., Breda, A., Guimarães, F., Sousa, H., Menezes, L., Martins, G., & Oliveira, P. (2007). Programa de Matemática do Ensino Básico. Lisboa: Ministério da Educação, Direção Geral de Inovação e Desenvolvimento Curricular.
Robinson, K., & Aronica, L. (2009). The element: How finding your passion changes everything. New York, NY: Penguin.
Ruthven, K. (2008). The Interpretative Flexibility, Instrumental Evolution, and Institutional Adoption of Mathematical Software in Educational Practice: The Examples of Computer Algebra and Dynamic Geometry. Journal of Educational Computing Research, 39(4), 379-394.
Schattschneider, D. (2009). Enumerating symmetry types of rectangle and frieze patterns: How Sherlock might have done it. In T. Craine (Ed.), Understanding geometry for a changing world – Seventy-first yearbook (pp. 17-32). Reston, Va: National Council of Teachers of Mathematics.
Schultz, K. A., & Austin, J. D. (1983). Directional effects in transformational tasks. Journal for Research in Mathematics Education, 14(2), 95-101.
Shah, S. A. (1969). Selected geometric concepts taught to children ages seven to eleven. Arithmetic Teacher, 16, 119-128.
Silver, E. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM – The International Journal on Mathematics Education, 3, 75-80.
Stein, M., & Smith, M. (2009). Tarefas Matemáticas como quadro para reflexão. Educação e Matemática, 105, 22-28.
Stein, M. K., Engle, R., Smith, M., & Hughes, E. (2008). Orchestrating productive mathematical discussions: Helping teachers learn to better incorporate student thinking. Mathematical Thinking and Learning, 10(4), 313-340.
Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: prospects and paradigms. In S. J. Sternberg (Org.), Handbook of creativity (pp.3-15). New York: Cambridge University.
Torrance, E. P. (1974). Torrance tests of creative thinking. Bensenville, IL: Scholastic Testing Service.
Vale, I., Pimentel, T., Barbosa, A., Borralho, A., Barbosa, E., Cabrita, I., & Fonseca, L. (2011). Padrões em matemática. Uma proposta didática do novo programa para o ensino básico. Lisboa: Texto Editores.
Vale, I., Pimentel, T., Cabrita, I., & Barbosa, A. (2012). Pattern problem solving tasks as a mean to foster creativity in mathematics. In 36th Conference of the International Group for the Psychology of Mathematics Education, 4 (pp. 171-178). Taipei, Taiwan: PME.
Valente, J. (2001). A Informática na Educação: O computador auxiliando o processo de mudança na escola. Retrieved from: http://www.nte-jgs.rct-sc.br/valente.htm
Veloso, E. (2002). The Geometers Sketchpad (versão 4). Educação e Matemática, 66, 20-21. Lisboa: APM.
Zamir, H., & Leikin, R. (2011). Creative mathematics teaching in the eye of the beholder: focusing on teachers’ conceptions. Research in Mathematics Education, 13(1), 17-32.
Categories: 2015, Articles - JETEN, Mathematics Education
Leave a Reply